Pitt Researchers Develop Synthetic Platform to Produce Materials for Specific Biomedical Applications

by | May 18, 2012

New platform shows promise in the advancement of tissue engineering and drug delivery

Cells observed differentiating on the platform.

Despite significant advances, the development of synthetic biomaterials still presents a great challenge to biomedical engineering researchers. Although synthetic biodegradable materials such as polyester exist, most are biologically inert and lack functionality. Now, thanks to a research team at the University of Pittsburgh, a synthetic platform has been developedthat will help produce diverse biodegradable materials for specific biomedical applications. 

The Pitt team, led by principal investigator Yadong Wang, a professor in Pitt’s Swanson School of Engineering and School of Medicine’s Department of Surgery, developed the platform using polymerization between acid and epoxide, a cyclic ether with three ring atoms.

“For the first time, we present a polymerization approach that is very practical and includes a wide range of starting materials, simple synthesis, and easy modifications,” said Wang. “This platform shows promise in the advancement of tissue engineering and drug delivery and could produce a variety of biodegradable and functionalized biomaterials.”

Wang and his team set out to address previous barriers regarding synthetics by designing a simple and versatile platform that yields functionalized polyesters with diverse physical, chemical, mechanical, and biological properties. More specifically, they focused on hydroxyl groups, a substructure of the water molecule. While using epoxides for another project, Yang and Pitt postdoctoral student Zhengwei You speculated as to what reaction might occur between acids and epoxides. The result was a versatile synthetic platform with easy-to-produce capabilities.  

“To the best of our knowledge, this level of simplicity and versatility for a synthetic platform is uncommon,” said Wang. “Most of the reported synthetic strategies for functionalized polyester require elaborate preparation.”

In addition to possessing biomedical applications, this type of functionalized polyesters will enrich the current collection of compostable polyesters, which, Wang notes, comprise the most promising class of eco-friendly materials.

ASN Weekly

Sign up for our weekly newsletter and receive the latest science news.

Related posts: